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Abstract—We have demonstrated a rectangular microwave pho-
tonic filter (MPF) based on stimulated Brillouin scattering (SBS)
effect in optical fiber and offering tunability on bandwidth, central
frequency, and selectivity. A sweeping-pump multistage configura-
tion with feedback control is implemented to achieve the rectan-
gular MPF with high selectivity. The obtained 20-dB shape factor
is as low as 1.056, which is, to our knowledge, the best reported
result for MPF in gigahertz bandwidth. Furthermore, we solve the
polarization-dependent SBS gain issue and realize a polarization-
independent MPF. The SBS noise is reduced by adopting a mul-
tistage configuration to limit the gain at each stage. Finally, the
filter selectivity for a four-stage configuration is as high as 57 dB
for a 2.1-GHz bandwidth. In this case, the signal-to-noise ratio
penalty is only 2.6 dB for a 4-Gbit/s orthogonal frequency division
multiplexing signal in the quadrature-phase-shifted keying format.

Index Terms—Microwave photonics filter, polarization-
independent, stimulated Brillouin scattering.

I. INTRODUCTION

IN radio-frequency (RF) systems, there has been consider-
able interest in using photonic devices to implement flex-

ible signal filtering functions, which are generally called mi-
crowave photonic filters (MPF). A desired MPF should have a
single pass band with flexible tunability on bandwidth, central
frequency and selectivity, and polarization-independent charac-
teristics. Most importantly, the MPF should have flat-top re-
sponse and high roll-off to select the desired signals with high
rejection of out-of-band signals. Meanwhile, the filter should
cause minimal degradation on the signal performance.
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There have been numerous publications about MPF [1]–[4],
but meeting the above requirements simultaneously is extremely
difficult. MPFs have generally been realized either by RF signal
modulated single-frequency optical source followed by delayed
tap filters [1] or by RF signal modulated multi-wavelength op-
tical source followed by dispersion elements [5]. Optical comb
has also been proposed to improve the tap numbers for enhanced
filter configurability [6]. But ideal rectangular MPF with flexi-
ble tunability is extremely challenging. On the other hand, nar-
rowband optical filter provides a good candidate for MPF by
mapping the microwave signals to the optical field, then pro-
cessing the signal in optical domain and finally converting it
back to the microwave domain. Programmable optical proces-
sor based on liquid crystal on silicon (LCOS) [7] and virtually
imaged phased-array (VIPA) [8] have been proposed to achieve
narrowband flat-top MPF, but rectangular response in ∼GHz
range cannot be achieved due to the limited spectral resolution.

Stimulated Brillouin scattering (SBS) in fiber can be con-
sidered as an active optical filter with a spectral resolution of
∼20 MHz; therefore, it is a perfect choice for MPF [9]–[12].
The filter bandwidth and the shape can be flexibly changed by
controlling the pump spectrum using external modulation [13],
[14], direct current modulation [15], [16] and cascaded phase
and intensity modulation [17]. In addition, the filter extinction
ratio can be increased by the polarization characteristics of the
SBS amplification [14], [16]. However, as it is very difficult to
precisely control the pump spectrum, the exact flat top and steep
edges for the ideal rectangular filter can hardly be achieved. Re-
cently, we have demonstrated a rectangular optical filter with
bandwidth tuning from 50 MHz to 4 GHz by shaping the SBS
pump with digitally-controlled electrical multi-tone algorithm
with feedback compensation [18]. But electrical/optical non-
linearities originated from the multi-tone pumps generate un-
desired out-of-band gain. Furthermore, pump depletion limits
the maximal signal gain thereby limiting the filter selectivity
to around 25 dB at 1 GHz bandwidth. By using pump-splitting
dual-stage configuration, the gain saturation effect can be sup-
pressed at each stage. Pump efficiency is thus improved, and the
filter selectivity can then be improved to 40 dB at 1 GHz band-
width [19]. Apart from the multi-tone pump scheme, Y. Stern
et al. have proposed to sweep the Brillouin pump frequency
combined with the polarization pulling effect in the SBS pro-
cess, also improving the filter selectivity to around 40 dB for
a 1 GHz bandwidth [14]. But the pass band ripple is as high
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Fig. 1. Principle for achieving high selective rectangular SBS filter.

Fig. 2. Principle of achieving spectral depolarization for multi-tone pump (a) and frequency-sweeping pump (b).

as 5 dB due to the non-flat frequency response of both elec-
trical and optical components. Recently, we have proposed a
feedback control technique to compensate the non-flat frequency
response in the pump sweeping scheme, and then reducing the
pass band ripple to less than 1.4 dB for bandwidths ranging
from 500 MHz to 3 GHz [20]. Then, by using pump-splitting
dual-stage configuration to avoid pump depletion, the selectivity
is improved to 45 dB for 2 GHz bandwidth. The 20 dB shape
factor (SF20dB ) is 1.056 at 1 GHz bandwidth, which is close
to the ideal rectangular case, and is, to our knowledge, the best
reported value among all the MPFs in ∼GHz bandwidth range.
The tuning of bandwidth, central frequency and selectivity has
also been demonstrated, showing the capability and versatility
of our proposed MPF.

However, two major issues still remain: first, polarization-
dependent SBS gain and second, high noise contribution re-
sulting in signal degradation. To achieve high SBS gain, and
thereby, high filter selectivity, the amplifier has to operate at
small input signal condition (−30 dBm in Ref. [20]). In this
case, the SBS amplified spontaneous emission (SBS-ASE) is
very strong; therefore, the filter will significantly degrade the
signal performance. To mitigate SBS-ASE, the amplifier must
operate at near saturation region, which significantly limits
the signal gain and therefore, the filter selectivity. To resolve
the contradiction, we propose using a pump-splitting multi-stage
configuration allowing a limited single-stage gain for lower
SBS-ASE while achieving a high cascaded gain for high filter
selectivity. On the other hand, as SBS process is polarization-
dependent, polarization state optimization is required at each
stage, which makes the cascaded SBS-based MPF very com-
plex for practical applications. Thus we propose using a de-
polarized frequency-sweeping pump which, for the first time,
allows eliminating the polarization-dependent characteristics of
the SBS-based MPF. We assess the MPF system performance by
filtering a∼4 Gbit/s orthogonal frequency division multiplexing
(OFDM) signal in quadrature phase shifted keying (QPSK) for-

mat. The polarization-independent rectangular SBS filter is set
to 2.1 GHz bandwidth and achieves 57 dB selectivity with only
2.6 dB signal-to-noise ratio (SNR) penalty. With these superior
performances, the SBS-based filter is close to meeting all the
technical requirements of the desired MPF.

The structure of this paper is as follows: In Section II, on
account of previous processes, we apply the feedback compen-
sation technique to the pump sweeping case, and then explain
the necessity and principle of polarization-independent SBS op-
eration. In Section III, we present the experimental setup for the
rectangular MPF based on pump sweeping scheme along with
the polarization-independent process in detail. In Section IV,
we analyze the high selectivity, tunability, and low noise perfor-
mance with the polarization-independent characteristic of the
SBS-based MPF. Finally, in Section V, we conclude the results
of the experiments.

II. PRINCIPLE

Since the SBS gain increases exponentially with the pump
power, even small pump power variations result in great gain
differences. Thus we propose a precise control of each pump
line, called feedback compensation, to realize the flat top MPF.
The feedback compensation principle is similar to what we
have proposed in the multi-tone pump configuration [6]. The
feedback compensation algorithm is also applicable for pump
sweeping case as shown in Fig. 1. The pump wave is obtained
through optical carrier-suppression single-sideband (OCS-SSB)
modulation driven by frequency-sweeping signal from an arbi-
trary waveform generator (AWG). The corresponding SBS gain
is measured by an electrical vector network analyzer (EVNA).
Unlike the multi-tone pump case where all the tones exist si-
multaneously, there is a single frequency at any specific time in
the pump sweeping case. So, there is neither the nonlinearities-
induced gain ripple nor the undesired out-of-band gain, thereby
ensuring the sharpness of the gain filter. The non-flat frequency
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Fig. 3. Experimental setup for rectangular MPF.

Fig. 4. Experimental setup for polarization-independent MPF based on pump-
splitting four-stage SBS.

response mainly originates from the electrical and optical
components such as the digital-to-analog-converter (DAC),
electrical driver and optical modulator. The frequency sweeping
time is a key parameter to achieve a flat response after feedback
compensation. Fast sweeping in ∼ns period will make the feed-
back algorithm fail. Slow sweeping in ∼μs period can achieve
very flat response, but the sweeping period should be shorter
than the signal propagation time in the fiber; therefore, the sig-
nal wave is subjected to SBS amplification by the entire pump
spectrum. Besides, the pump-splitting multi-stage configuration
can avoid pump depletion.

Nevertheless, the polarization-dependent SBS characteristic
necessitates a complicated control of the polarization state at
each stage. Therefore, it should be desirable to eliminate the
polarization-dependency of the SBS effect itself. We then pro-
pose a polarization-independent operation using a completely
depolarized pump wave with a degree of polarization (DOP)
near 0. This depolarization is achieved using a polarization
beam splitter (PBS) to separate the broadband pump into two
polarization orthogonal waves, which are then combined by a
polarization beam combiner (PBC) after experiencing differ-
ent fiber-based delay lines. For the multi-tone based broadband
pump, the phase difference varies linearly with the frequency for
the same delay. So the phase difference on two polarization pro-
jections results in a polarization state variation of each spectral
line as shown in Fig. 2(a), corresponding to a spectral-averaged
DOP of 0. Therefore, the depolarized multi-tone pump cannot
achieve polarization-independent SBS operation and results in
strong SBS gain ripple.

Unlike the multi-tone configuration where all the frequen-
cies exist simultaneously, there is a single frequency at a time
in the frequency-sweeping case. When the two delayed polar-
ization projections are combined, the frequencies on the two

polarization projections are different at any specific time; there-
fore, no polarization rotation happens and the pump frequency
sweeps on two independent orthogonal polarization states as
shown in Fig. 2(b). In the frequency domain, the depolarized
frequency-sweeping pump can be considered as a broadband
polarization-multiplexed pump; therefore, the polarization de-
pendent gain (PDG) can be completely eliminated.

III. EXPERIMENTAL SETUP

A. Rectangular MPF

In this section, we verify the above analysis experimentally.
According to the pump sweeping principle, we set up the ex-
periment for the rectangular MPF as shown in Fig. 3. Two laser
sources serve as the Brillouin pump and the probe respectively.
In the pump branch, an AWG is used to generate the frequency
sweeping signal. Then it is modulated in the light to generate
the SBS pump with OCS-SSB modulation using an I&Q mod-
ulator (IQM). The OCS-SSB pump light is then amplified by
a high power erbium-doped fiber amplifier (EDFA) and split
equally into two parts, which are finally launched into 25-km
single mode fiber (SMF) spools via optical circulators (OCs).
Polarization controllers (PCs) are used to achieve the maximum
SBS gain. In the probe branch, another laser source is amplitude
modulated by a standard Mach-Zehnder modulator (MZM) with
RF signal. An optical bandpass filter (BPF) with a 3 dB band-
width of 10 GHz is used to suppress one sideband and obtain
SSB format. Note that an IQM can also be used for SSB genera-
tion as in the pump branch. The probe light is launched into the
fiber and its sideband is amplified once it falls into the SBS gain
region. The processed RF signal is detected using a photodiode
(PD) by beating the probe carrier and the amplified sideband.
The amplitude and phase response of the SBS-based MPF are
measured by an EVNA. The waveform generated by the AWG,
the pump wavelength and the pump power determine the shape,
central frequency and selectivity of the filter, respectively. In
the experiment, we fix the frequency sweeping duration at 1 μs,
which can achieve effective feedback compensation and is also
much shorter than the propagation time of ∼120 μs in the 25-
km SMF. Note that the pump sweeping time of 1 μs is much
longer than the lifetime of the SBS phonons of around 10 ns.
The SBS interaction for different parts of the spectrum takes
place at different spots in the fiber thereby reducing the effec-
tive length of the SBS interaction and increasing the required
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Fig. 5. Filter amplitude and phase response before and after feedback compensation.

Fig. 6. Filter bandwidth and central frequency tuning and the corresponding phase response.

pump power compared with the single frequency pump case.
Besides, the SBS frequency shift of a fiber depends on the fab-
rication and can be different at different spots of the same fiber.
The temperature and strain variation on the fiber will also change
the frequency shift, but the induced frequency shift variations
are only in the ∼MHz region and would not significantly affect
the performance of SBS-based MPF with ∼GHz bandwidth.

B. Low Noise Polarization-Independent MPF

On the basis of the rectangular MPF presented above, we
can now design the low noise polarization-independent MPF.
The experimental setup is shown in Fig. 4. The generation of
both frequency-sweeping Brillouin pump and probe signal is
the same as in the previous experiment. The broadband pump is
depolarized using a PBS, a 3-m polarization maintaining fiber
(PMF) and a PBC. It is then amplified by a high power EDFA and
split into four equal parts, which are launched into 25-km SMF
fiber sections via OCs. Note that the fiber length has not been
optimized in the experiment. No polarization controllers are
required for the depolarized frequency-sweeping pump scheme,
which simplifies the experimental setup significantly. The probe
light goes through the fiber and its sideband is amplified once
it falls into the SBS gain region. The optical attenuator (ATT)
at the input of the next stage is used to optimize the input
power at each stage to achieve high gain and mitigate SBS-ASE.
The amplitude and phase response of the SBS based MPF are

measured by the EVNA. Feedback compensation algorithm is
also implemented to achieve a rectangular filter response. Filter
response and system performance are evaluated in the following
section.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION

A. Tunable Rectangular MPF

In this part, we show the effectiveness of the pump sweeping
case with feedback compensation for a 3 GHz filter. With a very
flat sweeping pump signal as shown in the inset of Fig. 5(a),
the passband ripple is as high as 15 dB due to the non-flat
frequency response of the electrical and optical components,
where the low-frequency SBS gain corresponds to the high-
frequency pump. The peak outside the filter pass band corre-
sponds to the residual carrier of the pump. After implementing
the feedback compensation scheme, the pass band ripple is re-
duced to ±0.7 dB and the pump carrier is fully suppressed. Pre-
compensation of the pump waveform can also optimize the pass
band ripple to some extent, but only feedback compensation can
fully suppress the ripples and achieve a smooth gain response.
Unlike the multi-tone pump scheme, there is no nonlinearity-
induced out-of-band gain; therefore, the filter selectivity is equal
to the on-off SBS gain, defined as the probe amplitude difference
with and without the Brillouin pump power. The phase response
of the filter before and after feedback compensation is shown in
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Fig. 7. Filter selectivity tuning, selectivity variation with pump power and the shape factor measurement.

Fig. 8. The SBS gain spectra variation for different signal polarization states: (a) single-polarization pump, (b) depolarized multi-tone pump, (c) depolarized
frequency-sweeping pump.

Fig. 9. The system performance evaluation setup of the polarization-
independent four-stage SBS filter.

Fig. 5(b). Note that once feedback compensation is completed,
the electrical pump waveform is stored for future use.

By changing the bandwidth of the sweeping pump signal,
the filter bandwidth can be tuned from 500 MHz to 3 GHz
while keeping the passband ripple less than ±0.7 dB as shown
in Fig. 6(a). The corresponding phase response is presented in
Fig. 6(b). By tuning the pump wavelength, the central frequency
of the filter can be tuned while the rectangular shape remains
unchanged. Simultaneously, the filter bandwidth can be tuned
by modifying the electrical pump waveform stored in memory
as shown in Fig. 6(c).

The filter selectivity can be tuned by simply changing the
pump power with the same pump waveform. Taking a 1 GHz
rectangular filter as an example, the selectivity can be increased
from 20 dB to 45 dB by increasing the pump power from 18.2
dBm to 23.2 dBm, while keeping the rectangular shape as shown

in Fig. 7(a). Actually the on-off SBS gain is as high as 55 dB
with 23.2 dBm pump power; however, the measurement of the
selectivity is limited by the 45 dB dynamic range of the PD. The
small ripple in the 10–11 GHz region originates from the beat-
ing of the amplified probe and the Rayleigh backscattering of
the pump wave. With the increase in the filter bandwidth, the re-
quired pump power is higher. However, the required pump power
is much lower compared to what is needed in the single-pump
single-stage configuration. Finally, a shape factor (SF20dB) of
1.056 for a 1 GHz filter with 40 dB selectivity is measured.
This is, to our knowledge, the best result among all the MPFs
in ∼GHz bandwidth region.

B. Low Noise Polarization-Independent MPF

The previous experiment produces an MPF with high selec-
tivity and flexible tunability. In this part, we propose a solution
to solve the polarization dependency problem of SBS gain for
superior performance. System performance is evaluated at the
same time. For the single-polarization pump, the rectangular
filter response optimized from a specific polarization state is
completely reshaped for other polarization states due to SBS-
PDG, as shown in Fig. 8(a). The filter ripple is more than 20 dB
for the depolarized multi-tone pump as shown in Fig. 8(b). The
filter can keep the rectangular response for different polariza-
tion states only for the depolarized frequency-sweeping pump.
The PDG is less than 1 dB, as shown in Fig. 8(c), proving the
polarization-independent characteristic of the SBS-based MPF
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Fig. 10. (a) SBS gain and corresponding QPSK constellation variation with input power, (b) BER-SNR evolution for 25 dB signal gain with different stages, (c)
BER-SNR evolution for four-stage filter with different gains.

using depolarized frequency-sweeping pump. By increasing the
pump power, the filter selectivity can be improved, but its mea-
surement is limited to 45 dB due to the dynamic-range limitation
of the measurement system. For higher selectivity values, we
have to measure the on-off SBS gain using an optical spectrum
analyzer.

The signal degradation brought by the MPF is evaluated us-
ing a coherent detection platform as shown in Fig. 9. The AWG
with two channels is used to generate both frequency-sweeping
signal for SBS pump and OFDM probe signal. A polarization
scrambler (PS) after the transmitter is used to demonstrate the
polarization-independent characteristic of the filter. After the
SBS filter, the OFDM signal is detected using a coherent re-
ceiver. The ASE source and the attenuator (ATT) are used
to adjust the optical signal to noise ratio (OSNR) of the de-
tected signal for bit rate error (BER) measurement. Offline pro-
cessing is used to calculate the BER of the signal. We adopt
the polarization-independent SBS-based rectangular filter with
2.1 GHz bandwidth to amplify ∼4 Gbit/s OFDM signal with
QPSK format. For a more precise description of OFDM signal
generation and detection, see reference [18].

To achieve the best signal performance with the highest SBS
gain and therefore, the highest filter selectivity, we first optimize
the pump power and the losses between stages, and achieve
the optimal values of 28 dBm and 8 dB respectively. We then
tune the input power and measure the SBS on-off gain shown
in Fig. 10(a). For a −7 dBm input power, we can achieve a
57 dB cascaded on-off gain, corresponding to a filter selectiv-
ity of 57 dB. The insets of Fig. 10(a) show the corresponding
gain measurement and QPSK constellations. Even if QPSK con-
stellations are very noisy for low and high input power due to
SBS-ASE noise and gain saturation, no error floor has been
stated in the −9 dBm to 0 dBm input power range.

In the following measurement, we fix the input power at
−7 dBm. Fig. 10(b) shows the BER evolution with SNR for
the same gain of 25 dB with different stage-numbers. The four-
stage configuration achieves the best performance, which is very
close to the back-to-back (BtB) case, proving that multi-stage
configuration can improve the signal performance. Fig. 10(c)
shows the BER-SNR evolution for the four-stage filter with

different gains. The SNR penalty with respect to BtB is only
2.6 dB at a BER of 10−3 for a SBS gain of 57 dB.

V. CONCLUSION

In this paper, we have demonstrated a high selectivity rect-
angular MPF based on SBS effect in optical fiber. By using a
pump-sweeping scheme combined with feedback compensation
and pump-splitting dual-stage configuration, a rectangular filter
with a selectivity as high as 45 dB has been achieved. The tun-
ing of bandwidth, central frequency and selectivity shows the
significant capability of the proposed SBS-based MPF. By us-
ing a depolarized frequency-sweeping pump in a pump-splitting
four-stage configuration, a polarization-independent rectangu-
lar SBS filter with 2.1 GHz bandwidth and 57 dB selectivity has
been achieved. The multi-stage configuration can mitigate SBS-
ASE; thus, the SNR penalty of 4 Gb/s QPSK-OFDM signal is
only 2.6 dB with respect to the BtB case at a BER of 1e-3. So,
the proposed SBS filter is very close to meeting all the technical
requirements of the desired MPF mentioned in the introduction.
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rently named as Telecom ParisTech), Paris, France, and SJTU, in March and
June 2008, respectively, as a joint-educated Ph.D. student. After graduation,
he was with the Oclaro R&D center as a Product Development Manager and
presided projects of Alcatel-Lucent 100G novel optical amplifier and Avanex
next generation optical amplification platform. In 2010, he joined the State Key
Laboratory of Advanced Optical Communication Systems and Network, SJTU,
where he is currently working as an Associate Professor. His main research top-
ics include novel optical access networks, optical signal processing, graphene
photonics, and secure optical communications. He is the author or coauthor of
more than 100 papers in peer-reviewed journals and conferences, including more
than ten invited papers, which have been cited more than 800 times (Google
Scholar). He received the awards of “National excellent Ph.D. thesis in China”
and “National Science Fund for Excellent Young Scholars of China.”

Wei Wei received the B.S. and M.S. degrees from the State Key Laboratory
of Advanced Optical Communication Systems and Networks, Shanghai Jiao
Tong University (SJTU), Shanghai, China, in 2012 and 2015, respectively. He
is currently working toward the Ph.D. degree at SJTU and Telecom ParisTech,
Paris, France. His research interest includes optical signal processing based on
stimulated Brillouin scattering.
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